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ABSTRACT
Circadian Biology intersects with diverse scientific domains, intricately woven into the 
fabric of organismal physiology and behavior. The rhythmic orchestration of life by the 
circadian clock serves as a focal point for researchers across disciplines. This retrospective 
examination delves into several of the scientific milestones that have fundamentally 
shaped our contemporary understanding of circadian rhythms. From deciphering 
the complexities of clock genes at a cellular level to exploring the nuances of coupled 
oscillators in whole organism responses to stimuli. The field has undergone significant 
evolution lately guided by genetics approaches. Our exploration here considers key 
moments in the circadian-research landscape, elucidating the trajectory of this discipline 
with a keen eye on scientific advancements and paradigm shifts.
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INTRODUCTION

Over the past 15 to 30 years, circadian research has 
witnessed an extraordinary evolution, marked by 
groundbreaking scientific advances. The identification 
of “clock genes” in fruit flies, plants, bacteria, fungi, and 
mammals, a feat accomplished first by researchers like Ron 
Konopka and Seymour Benzer, paved the way for unraveling 
the molecular underpinnings of circadian timekeeping. The 
elucidation of gene expression feedback loops, coupled with 
the development of luciferase reporters, ushered in a new 
era of monitoring transcriptional and translational rhythms 
in living organisms. The realization that multicellular 
organisms house multiple clocks, rather than a singular 
central pacemaker, reshaped our understanding of internal 
temporal synchronization. The discovery of intrinsically 
photosensitive retinal ganglion cells (ipRGCs) and their role 
in circadian photoentrainment added a new dimension to 
our comprehension of photoreception. Coupled oscillators, 
both theoretically and physically conceptualized, provided 
a unified framework, offering insights into how endogenous 
oscillators synchronize with environmental cycles.

These reflections on the historical milestones and 
current insights underscore the interdisciplinary nature 
of circadian biology. As we stand on the shoulders of 
past achievements, the significance of identifying clock 
genes, deciphering gene expression feedback loops, 
and understanding the role of nonphotic cues becomes 
evident. This journey through time not only highlights the 
resilience of early scientific excitement but also serves as 
a compass for future circadian explorations. The intricate 
interplay of theoretical concepts, molecular research, 
and practical applications demonstrates the far-reaching 
implications of circadian biology, touching realms from 
agriculture to human health. Through these reflections, we 
aspire to inspire the next generation of circadian scientists, 
encouraging them to unravel the remaining mysteries and 
propel circadian research into new frontiers.

Gene hunting
Sangeeta Chawla, Henrik Oster, Giles E. Duffield, 
Erik Maronde

The endogenous nature of circadian rhythms, inferred from 
their persistence in constant conditions, had been known 
for centuries. A key breakthrough in chronobiology was 
the identification of “clock genes” in the late 20th century, 
first in flies and then in mammals, eventually leading to 
the elucidation of gene expression feedback loops as the 
mechanistic basis for circadian timekeeping. The era of 
clock genes began with the seminal work of Ron Konopka 
and Seymour Benzer who screened mutant flies for altered 

circadian behaviours to identify the per mutants in 1971 [1]. 
Indeed, Seymour Benzer is credited with founding the field 
of neurogenetics. The idea that a single gene can control 
behaviour [2] was met with scepticism when Seymour 
Benzer first embarked on his work on fruit flies in the late 
1960s. Remarkably, Benzer and his colleagues isolated 
mutants with a range of behavioural deficits, some of these 
with ingenious bespoke apparatus [3]. The circadian rhythm 
mutant screen, for example, used an eclosion monitor to 
measure rhythms in the emergence of flies from pupae 
and infrared light beams to measure locomotor activity 
rhythms. Konopka and Benzer isolated not just circadian 
arrhythmic mutants but also those with shorter (19 h) and 
longer rhythms (28 h) that mapped to the same gene. It 
took several years to appreciate the significance of these 
shorter and longer mutations as seminal work done over 
the next two decades by Rosbash, Young, and Hall revealed 
the interactions of the Drosophila period protein [4, 5] with 
additional clock genes including timeless [6, 7] and how 
these genes and post-translational regulation of their gene 
products generated gene expression loops [8, 9] with 24 h 
periodicity.

The discovery of insect clock genes fuelled a search 
for “clock genes” in mammals. In the 1990s, many 
labs were hunting for and discovering the mammalian 
homologues of the fly clock genes that Benzer, Rosbash, 
Hall, and Young had discovered in the 1970s and 1980s. 
In 1997 Joe Takahashi`s group cloned “CLOCK” [10] and 
the mammalian period genes were described almost 
simultaneously by the Okamura [11, 12], Reppert [13] and 
Lee labs [14], although in the Lee lab they initially named 
it Rigui (after a Chinese sundial). Sequence homologies 
between mammals and flies were rather moderate which 
made it difficult to identify homologues (in the absence 
of fully annotated genome sequences at the time). Some 
confusion assumed with regard to the dTim homologue 
Timeless – which turned out to be a false friend and not 
related to circadian clock function at all [15].

The initial cloning and characterization of the 
mammalian period (per) genes, revealed in studies 
published between 1997 and 2000 was a landmark 
achievement that transformed the landscape of 
chronobiology and the understanding of the mammalian 
circadian clock. Not only did it open up the molecular black 
box of the hypothalamic suprachiasmatic nucleus (SCN) 
clock but also shifted perspective on the existence and 
character of the peripheral clock [16] and bolstering the 
concept of the cell autonomous clock [17] in the mammal. 
The discovery of the period 1 (per1) gene was followed 
quickly thereafter by identification of per2 and per3, also 
known as mPer1, mPer2 and mPer3, ‘m’ as in ‘mouse’ 
[13, 18–20]. Key findings were that all were expressed 
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within the SCN, and later revealed to be present in many 
tissues across the mouse and rat body, were rhythmically 
expressed at mRNA level with an approximate 24-hour 
periodicity. The important feature of the period genes is 
that not only are per1 and per2 state variables of the clock, 
but that their levels can be induced by light/photic-signals 
[12, 21], while being suppressed by non-photic behavioural 
arousal entrainment cues [22]. They are immediate early 
genes (IEGs), not requiring any prior de novo protein 
synthesis to induce their gene expression. They are the 
molecular gateway into the resetting of the circadian 
clock. The period genes are critical components of the 
clock, forming the negative portion of the transcriptional-
translational feedback mechanism that comprises the 
molecular clock. The paired genetic deletion of per1 and 
per2 combined renders the clock non-functional [23]. The 
revelation that a single polymorphism of the per2 gene in 
the human could result in such a profound phenotype as 
familial advanced sleep phase syndrome with a ~4-hour 
phase angle difference [24] cemented the role of this 
gene family in shaping the function of the circadian timing 
machinery in the human. After the core circadian clock loop 
with Clock, Bmal1, Periods, and Cryptochromes had been 
described, the accessory loops were discovered by the 
Schibler [25] and Honma labs [26], which ended the golden 
age of clock gene hunting. Several modulators have been 
described and genes linking clock function to physiology, 
but the field quickly moved on to studying the functional 
consequences of clock disruption. The available knockout 
mice with their multiple and complex phenotypes continue 
to create interesting research questions even today.

The knowledge of genes and gene loops in flies and 
mammals allowed for development and utilisation of 
reporters that could be used to monitor transcriptional and 
translational rhythms in living cells, organs and organisms.

Studying the clock in real time
Seth J. Davis

One of the greatest technical innovations in chronobiology 
is the transgenic introduction of luciferase as a vital reporter 
to indirectly measure transcription for days in living cells 
and organisms. The first report of this was the introduction 
of firefly luciferase to the model plant Arabidopsis [27]. Soon 
after this, a bacterial luciferase was shown to drive similar 
rhythms in cyanobacteria [28]. Using the firefly system, 
the first ever circadian mutants in plants were found and 
characterised [29,  30]. This system has also been used to 
perform numerous physiological studies in Arabidopsis, and 
other plants. It was used in quantitative genetics studies to 
reveal natural allelic variation in rhythm patterns in the lab 

[31] and in the field [32, 33]. These Arabidopsis findings led 
to similar capacity to explore the firefly system in animals, 
where it was first used in Drosophila [34] and then living 
mouse explants [35].

Overall the pioneering use of firefly luciferase in 
Arabidopsis had profound implications to the whole of the 
circadian clock community, with implications far beyond 
plant studies and a key finding enabled by this technology 
was how pervasive cellular clocks are.

Incorporating a Metabolic Oscillator
Mario Eduardo Guido

Beyond the canonical transcription–translation-based 
feedback loop the groundbreaking discovery of a ‘metabolic 
oscillator’ added another mechanistic dimension to cellular 
timekeeping [36–38]. The metabolic oscillator drives 
rhythms in the cellular redox state generating oscillations 
in reactive oxygen species, peroxiredoxin oxidation state, 
glycerolipid enzyme expression, metabolism and energy 
store, among other parameters [39]. These metabolic 
oscillations can be observed in normal cells and tissues and 
even in proliferating tumor cells (glioma, hepatocellular 
carcinoma, etc.) after synchronization, and such oscillations 
still persist in the absence of transcription as seen in 
enucleated cells red blood cells [40, 41, 42]. The discovery 
of a metabolic oscillator has raised questions about its role 
in cellular time-keeping, its relationship with the TTFL-based 
molecular clock, and the implications of this in scenarios 
where the circadian system is disrupted as a consequence 
of modern life by factors such as continuous artificial 
illumination, nocturnal shift work, jet lag, hypocaloric diets 
and sedentary life amongst others [36, 37].

Clocks everywhere: Beyond the masterclock
Christopher C. Chabot

A key landmark paper from the Schibler lab [17] 
demonstrated that multicellular organisms are composed 
of many clocks, not just one central pacemaker. Cited nearly 
1700 times since its publication (Web of Science, 2024), 
this research paved the way towards an understanding 
that internal temporal synchronization involved not just 
temporal control by a master clock but also among many 
clocks. A desynchronization of these multiple clocks is 
thought to underlie many of the problems associated with 
shift work in humans, including some types of depression 
and bipolar disorders. Importantly, these shift workers, 
who comprise approximately 20% of the US workforce 
[43], also have significantly increased rates of obesity [44], 
cancer, heart disease [45] and other metabolic issues [46]. 
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These findings also spawned hundreds of investigations of 
the importance of this internal synchronization in humans 
and other animals and has helped to provide important 
data for the new field of chronotherapy [47].

An important example of how cell autonomous clocks 
come together at an organ level is exemplified by the 
peripheral clock of the retina.

The retina: a unique model of circadian clock
Ouria Dkhissi-Benyahya

The retina has helped us understand how cellular clocks 
are organised in a hierarchical manner to generate a 
tissue clock. One of the first rhythms described in the 
mammalian retina was the cycle of rod outer segment disc 
shedding with lighting conditions [48]. Later, experiments 
performed in amphibians and birds demonstrated that 
the retina contains an endogenous circadian clock, able 
to oscillate in constant condition in a culture dish [49, 50]. 
However, it was not until 1996 that cultured hamster retina 
then mouse retina was reported to maintain autonomous 
circadian rhythms in melatonin secretion, providing 
evidence that an endogenous clock is also present in 
the mammalian retina [51, 52]. Based on molecular and 
physiological data from amphibians and birds, the initial 
prevailing model for circadian organisation in vertebrate 
retinas proposed that photoreceptors are the primary 
site of rhythm generation. By contrast, the exact location 
of the retinal clock in mammals has been a matter of 
long debate since its discovery in 1996. Using clock 
gene/protein expression and bioluminescence recording 
with luciferase reporter coupled to clock genes, several 
studies came to the consensus that retinal neurons as 
well as glial cells express the molecular clock machinery 
(for review, see [53]. Additional evidence demonstrated 
that the regulation of rhythmicity in the mammalian 
retina proceeds from a network of strongly coupled 
oscillators located within distinct cellular layers [54, 55]. 
The mammalian retina thus constitutes a fascinating 
clock model perfectly suitable to both understand the 
molecular mechanisms of circadian rhythm generation 
at the cellular and tissue level and to characterise 
synchronising factors coordinating multiple oscillators at 
the tissue level.

Groundbreaking research featured the retina in the 
seminal discovery of intrinsically photosensitive melanopsin 
retinal ganglion cells to shed light on novel aspects of 
photoreception and how photic stimuli contribute to 
circadian entrainment. Recent research, however, contends 
that neuropsin and/or rods, rather than melanopsin retinal 
ganglion cells, are necessary for the light entrainment of 
the mammalian retinal clock [56, 57].

Time for Entrainment
Ignacio Provencio, Namni Goel, Shawn D. Youngstedt, 
Natalie Zi-Ching Mak and Mario Caba

In the 1980s, evidence began to emerge that animals with 
retinal degeneration still could entrain locomotor rhythms 
to light:dark cycles [58, 59] Later it was shown that non-
visual responses to light even persisted in blind humans [60]. 
Importantly, bilateral surgical removal of the eyes renders 
mammals incapable of photoentraining their activity 
rhythms [61]. Taken together, these findings suggested 
that while the eyes are necessary for photoentrainment 
in mammals, rod and cone photoreceptors may be 
dispensable. These results paved the way for the search of 
a non-rod, non-cone ocular photoreceptor class underlying 
light’s impact on the circadian axis. In 2002, David Berson 
and colleagues identified intrinsically photosensitive retinal 
ganglion cells (ipRGCs), a type of retinal photoreceptor 
not previously known to exist [62]. ipRGCs project to the 
suprachiasmatic nucleus, the master circadian oscillator 
that governs circadian activity rhythms, and provide a neural 
pathway by which the central circadian pacemaker may be 
reset by light. The discovery of ipRGCs spawned a cottage 
industry of labs dedicated to understanding the signaling, 
anatomy, physiology, and function of these unique 
photoreceptors critical for circadian photoentrainment [63].

In parallel, studies on how nonphotic stimuli influence 
the circadian system in rodent models revealed how light 
exposure and wheel running could have synergistic or 
antagonistic effects on the circadian system depending 
on the timing of exposure to these zeitgebers. Particularly 
influential was the research by Mrosovsky et al. [64–66] and 
Mistlberger et al. [67–69]. Their pioneering studies inspired 
a series of human studies by the Youngstedt lab and others 
[70–73], including an ongoing study examining whether 
there are additive effects of bright light, exercise, and 
melatonin for facilitating humans to adjust to simulated 
jet lag [74].

The integration of photic and nonphotic stimuli effects 
(and their potent interactions) on the circadian system 
highlighted a clear necessity for the development of diurnal 
rodent models to allow extrapolation and comparisons of 
these circadian effects to those emerging in humans. These 
needs inspired the work by Goel et al. (e.g., [75–80]) and that 
of others on the broad behavioral and neuroanatomical 
characterization of photic and nonphotic stimuli on the 
circadian system and their mechanisms in a diurnal species. 
This work informed the development of cues to phase shift 
and modify the human circadian system in clinical and 
nonclinical settings.

A much studied nonphotic cue is food. When food is 
restricted to specific hours during the day, after several days, 
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animals develop intense preprandial locomotor activity and 
general arousal, which is termed food anticipatory activity 
(FAA; [81]). It had been considered that FAA is controlled 
by a putative food entrainable oscillator (s) (FEO; [82]), 
but their locus, if any at central and/or peripheral level, 
remains elusive. FAA had been intensely studied in several 
laboratory species including rabbits [83, 84], but most 
research had been performed in rodents [85]. However, 
even in a single species such as rats, there are a wide array 
of differences in the definition, experimental approach 
and interpretation of data, which make it more difficult to 
draw conclusions about the FEO. FAA had been studied for 
around 100 years in laboratory conditions. Over this period 
much information had been gathered about food and 
circadian physiology [86] and even the interaction between 
central and peripheral structures [87]. The interest to study 
this phenomenon has not decreased mainly because it 
suggests the existence of a strong oscillator(s) entrained 
by food distinct from that of the main circadian oscillator 
entrained by light in mammals. It is an open and exciting 
field of research for the new generation.

Coupling oscillators
Anjoom Nikhat and Shaon Chakrabarti

Circadian biology is one of the areas where theoretical 
and physical concepts have truly provided a fundamental 
unifying conceptual framework. While 24 hour rhythms 
in physiology had been appreciated by humans from 
ancient times, it was not until the late 20th century that 
it got firmly established that such rhythms are not driven 
by the daily cycles of day and night, but are a result of 
synchronization of endogenous oscillators in organisms 
to the environmental cycle [88, 89]. Just as two physical 
pendulums with somewhat different time-periods 
eventually exhibit oscillations with a common frequency 
after coupling via a wooden beam, one can conceptualize 
the effect of the day-night cycles as entraining existing 
biological rhythms within organisms. To a large extent this 
pivotal conceptual advance in the field of circadian clocks 
was driven by research in the theory of dynamical systems, 
and led to exciting advances in the late 1900’s and early 
2000’s, particularly in the field of coupled oscillators [90–
92]. The puzzling earlier observations on the variability of 
free-running oscillation time periods across organisms 
could be explained quantitatively, as could the existence 
of a wide range of human chronotypes and different phase 
response curves [93, 94]. Ideas such as entrainment range 
and phase of entrainment that were only qualitatively 
understood till then, could be related to the properties of the 
two coupled oscillators involved [95, 96]. These advances in 
turn spurred efforts to understand at a molecular level, how 
various external “zeitgebers” could reset the clocks within 

organisms, and how these clocks (de)synchronize with 
each other in health and disease [97–99]. In retrospect, the 
innate or endogenous nature of clock oscillations which we 
almost take for granted now, is a fundamentally important 
property, without which none of the current areas of 
circadian clock research would even exist.

The time is ripe
Lei Wang

The knowledge of how clock mechanisms relate to 
physiology has huge potential applications and one such 
field of translation is in improving human use of crops.

Circadian clocks are evolved to facilitate crops to adapt 
the daily and seasonally changed environment cues such 
as light and temperature. Soybean, maize, wheat and rice 
are staple crop in many of countries. The proper flowering 
time and maturity are vital for their domestication 
from the origin place to the lower or higher latitudes 
respectively. Recently, many of key genetic factors 
involved into their domestication were manifested to be 
core circadian components. For example, soybean, the 
facultative short day plant, originated from the temperate 
regions of China. Soybean cultivars with the dysfunction of 
the homologs of Arabidopsis Pseudo Response Regulators 
were preferably selected to ensure the early flowering 
time and maturity in the high latitude regions with 
longer day length [100]. By contrast, deficient of soybean 
homolog of LATE ELONGATED HYPOCOTYL (LHY) and Early 
Flowering 3 (ELF3), which both are core components of 
Evening Complex, was genetically targeted to adapt to the 
low latitude regions to avoid prematurity and to achieve 
high yield [101–103]. In wheat, the natural variations in 
Ppd-1 gene, one wheat homolog of PRR gene family, not 
only affect the photoperiod sensitivity, but also affect 
important agronomic traits, including plant height and 
grain weight [104, 105]. Similarly, rice Days to heading 7 
(DTH7)/OsPRR37 is also reported as a major determinant 
for grain yield and photosensitivity [106, 107]. Besides, core 
clock components were also shown to be major player for 
conferring abiotic stress tolerance and for controlling key 
developmental processes in crops [108–111]. Therefore, 
the knowledge of circadian systems in crops will further 
facilitate molecular design to construct superior cultivars 
to better adapt the local environments, in particular, for 
helping the de novo domestication of the new valuable 
plant resource.

CONCLUDING REMARKS

In conclusion, our reflective journey through the annals 
of circadian biology illuminates the multifaceted nature 
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of this dynamic field. From the pioneering identification of 
clock genes to the intricate dance of coupled oscillators, 
the historical milestones have not only shaped our present 
understanding but also cast a guiding light toward future 
endeavors. Circadian biology has transcended the confines 
of temporal regulation, intertwining with diverse aspects 
of life, from the molecular level to agricultural practices 
and human health. The realization that organisms 
harbor multiple clocks and the discovery of peripheral 
clocks underscore the complexity of internal temporal 
synchronization, providing crucial insights into health-
related challenges arising from desynchronization.

Reflecting on the past serves as more than just a 
nostalgic exercise; it becomes a call for action. As we 
stand on the cusp of the next wave of circadian research, 
the lessons from historical breakthroughs beckon us 
to explore new horizons. The integration of theoretical 
concepts with molecular research has set the stage for 
experiments that delve into the intersections of circadian 
biology with emerging fields. Leveraging the knowledge 
gained from clock genes, coupled oscillators, and the 
impact of nonphotic cues, we are poised to embark on 
experiments that bridge the gap between historical 
literature and contemporary trends. The challenge lies in 
unlocking the full potential of circadian biology, not only 
to deepen our understanding of biological timing but also 
to pioneer innovative applications that can revolutionize 
agriculture, human health, and beyond. As we look to 
the future, the echoes of the past resonate, urging us 
to unravel the remaining mysteries and inspire the next 
generation of circadian scientists to embark on their own 
transformative journeys.
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