The effects of lighting conditions and food restriction paradigms on locomotor activity of common spiny mice, Acomys cahirinus
DOI:
https://doi.org/10.1186/1740-3391-10-6Keywords:
(3-10) Circadian, Food entrainable oscillator, Food anticipatory activity, Constant light, Aschoff’s rule, LocomotorAbstract
Background: An endogenous circadian clock controls locomotor activity in common spiny mice (Acomys cahirinus). However, little is known about the effects of constant light (LL) on this activity or about the existence of an additional food entrainable clock. A series of experiments were performed to investigate the effects of LL and DD on tau and activity levels.
Methods: Spiny mice were housed individually and their running wheel activity monitored. One group of mice was exposed to LD, DD and several intensities of LL. Another group was exposed to a restricted feeding (RF) paradigm in light: dark (LD) during one hour before the L to D transition. Significance of rhythmicity was assessed using Lomb-Scargle periodograms.
Results: In LD all animals exhibited nocturnal activity rhythms that persisted in DD. When animals were exposed to RF (during L), all of these animals (n = 11) demonstrated significant food anticipatory activity as well as an increase in diurnal activity. This increase in diurnal activity persisted in 4/11 animals during subsequent ad libitum conditions. Under LL conditions, the locomotor rhythms of 2/11 animals appeared to entrain to RF. When animals were exposed to sequentially increasing LL intensities, rhythmicity persisted and, while activity decreased significantly, the free-running period was relatively unaffected. In addition, the period in LL was significantly longer than the period in DD. Exposure to LL also induced long-term changes (after-effects) on period and activity when animals were again exposed to DD.
Conclusions: Overall these studies demonstrate clear and robust circadian rhythms of wheel-running in A. cahirinus. In addition, LL clearly inhibited activity in this species and induced after-effects. The results also confirm the presence of a food entrainable oscillator in this species.
Published
Issue
Section
License
Copyright (c) 2012 The Author(s)
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms. If a submission is rejected or withdrawn prior to publication, all rights return to the author(s):
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Submitting to the journal implicitly confirms that all named authors and rights holders have agreed to the above terms of publication. It is the submitting author's responsibility to ensure all authors and relevant institutional bodies have given their agreement at the point of submission.
Note: some institutions require authors to seek written approval in relation to the terms of publication. Should this be required, authors can request a separate licence agreement document from the editorial team (e.g. authors who are Crown employees).